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ABSTRACT 
 
 We find that the global symbolic dynamics of a 
diffusively coupled map lattice (CML) is well-
approximated by a very small local model for weak to 
moderate coupling strengths. A local symbolic model is a 
truncation of the full symbolic model to one that 
considers only a single element and a few neighbors. 
Using interval analysis we give rigorous results for a 
range of coupling strengths and different local model 
widths. Examples are presented of extracting a local 
symbolic model from data and of controlling 
spatiotemporal chaos. 
 

1. INTRODUCTION 
 

 In this Letter, we approximate the global 
symbolic dynamics of a coupled map lattice (CML) with 
a set of local models each using only a small number of 
symbols. Coupled map lattices [Kaneko, 1990] are 
popular models of spatiotemporal chaos in reaction 
diffusion systems and their description via symbolic 
dynamics may provide an efficient and rigorous basis for 
understanding them. Indeed, the topology of unimodal 
maps has been completely elucidated in terms of 2-
symbol alphabets [Kitchens, 1998], and recently it has 
been conjectured that these results extend simply to the 
CML case [Pethel, 2006]. Nevertheless, one still has to 
contend with the issue of dimensionality in lattices. While 
a single logistic map is fully described by 2 symbols, an 
N-element lattice of them requires an alphabet of 2N 
symbols. Manipulation of the global symbolic dynamics 
of a large lattice would therefore appear impractical. In 
the case of diffusive coupling, however, we find that the 
symbolic dynamics at a particular site is largely 
determined by a local neighborhood, at least for some 
range of coupling strengths. Previously, it has been shown 
that the symbol statistics at a single site can indicate 
degrees of global synchronization [Jalan, 2006]. Here we 
propose using symbolic information from a small 
neighborhood to reconstruct the dynamics of the entire 
lattice. In what follows we use interval analysis to 
quantify this idea and to show that the global symbolic 
dynamics can be well-approximated by a compact local 
model for weak to moderate coupling strengths. 
 

2. SYMBOLIC DYNAMICS OF CMLS 
 
 We consider a map lattice with N sites 
labeled Ni K1= . Each site is described by a state t

tx  in 

the interval iI  and a unimodal local dynamic ii
i IIf →: . 

Denote by F  the product function of if  onto each site, 
and by A  an NN ×  coupling matrix, then the map lattice 
can be written as ( )tt xHx

rr
=+1 , where FAH o= . 

Models of this type have been extensively studied with 
regard to turbulence and pattern formation [Kaneko, 
1985]. Here we wish to introduce an alternate formulation 
in terms of local symbolic dynamics. 
 As reported previously [Pethel, 2006], it is 
conjectured that for A  nonsingular a homeomorphism 
exists between the spatiotemporal sequence 

}0,1:{ ≥= tNixi
t K  and the equivalently sized set of 

binary symbols i
ts  defined by 
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where iI 0  and iI1  are the two sub-intervals over which the 
unimodal map if  is monotonic. Figure 1a,b illustrates 
this mapping for a CML of logistic maps. The particular 
state i

tx  is homeomorphic to i
ts  plus the set 

},1:{ tlNjs j
l >= K . This relationship can be understood 

in the following way. Consider that the symbol vector 
nts +

r
 indicates which sub-interval the components of ntx +

r
 

lie in. Provided one knows which preimage to use, an 
estimate for 1−+ntx

r
 can obtained by applying 1−H  onto 

this vector of sub-intervals. The symbol vector 1−+nts
r

 
identifies the correct preimage because the two preimages 
of if  lie on different monotonic segments. We repeat this 
process until an estimate of tx

r
 is reached. At the last step 

only the symbol i
ts  is required to estimate i

tx . Because 
the inverse of a chaotic map is, on average, contracting, 
the estimate converges to i

tx  as ∞→n . 
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 Let 
tsP  be the vector of sub-intervals containing 

the CML state at time t . The first n  terms of the above 
algorithm can be expressed as 
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where NI  is the N  dimensional domain of H and the 
subscript on 1−F  specifies a particular inverse branch. 
The l.h.s. is the set of all states that produce the 
sequence 10 −nss L . An empty set implies a forbidden 
sequence. 
 
 Exact evaluation of Eq.2 is difficult; however, it 
is amenable to interval analysis [Galias, 2001]. This 
method utilizes interval arithmetic for the purpose of 
achieving rigorous bounds on the solution space. In this 
case, interval computations result in guaranteed, tight 
bounds on the components of the vector 0x  given some 
symbol sequence. Tightness is a consequence of the 
monotonicity of 1−

sF and is significant because it implies 
that the interval approximation converges with symbol 
depth n at the same rate as Eq.2. 
 
 
 In practice one uses a finite n  and deals with a space 
of truncated symbol sequences. This truncation is 
analogous to using a fixed number of bits to represent the 
real line in a digital computer. Symbols that occur further 
in the future are exponentially less significant than 
symbols that occur earlier in the temporal sequence. The 
total number of symbols representing i

tx  is, then, 1+Nn . 
Thus to construct an explicit mapping between the CML 
site value and the symbolic states one has to account for 
as many as 12 +Nn  possibilities, which is impractical for 
large lattices. 
 
 

3. THE LOCAL SYMBOLIC MODEL 
 

Using interval arithmetic the local symbolic 
dynamics can be investigated rigorously. We define the 
local symbolic representation of a CML site i

tx  to be the 
symbols in a neighborhood of spatial width m and 
temporal depth n . Because the symbols j

ts , ij ≠ are 

irrelevant to i
tx  we are effectively left with the paddle-

shaped region illustrated in Figure 1b. Restricting Eq.2 to 
the local neighborhood requires using a full interval for 
each unspecified component of 

1−nsP and taking the union 
of the two preimages at each of these sites. In this way we 

can compute guaranteed bounds on i
tx  given only 

knowledge of symbols in a local neighborhood. 
 
 As mentioned earlier, we expect the local symbolic 
model to be suitable for diffusively coupled systems. 
From Eq.2 we see that the symbols are related to the 
CML state via repeated applications of the inverse 
mapping, 111 −−− = AFH o . In the case that the coupling 
matrix A  is tridiagonal---i.e. the CML employs nearest 
neighbor coupling---the elements of 1−A  can be found 
analytically [Yamani, 1997] and shown to fall off 
exponentially in magnitude with increasing offset from 
the diagonal. A major point here is that the symbolic 
dynamics at site i is largely determined by a small 
neighborhood Nm << , at least for some range of 
coupling strengths Importantly, the local model restricted 
in this way requires only 1+− mmn  symbols and is 
therefore independent of the lattice size N . 
  
  

 
 

Fig. 1 A time-space segment of a 1-d CML of 
logistic maps. (a) Real valued CML states shown 

with 2 digits of precision, (b) the equivalent 
symbolic representation. A the local symbolic 

model using 5=n  is outlined. 

 
 The local models give us a tractable means of 
describing the global symbolic dynamics of the CML. If 
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we define the complexity of a set to be its cardinality, then 
the maximum complexity of the entire collection of local 
models is 132 +⋅ nN . This extreme assumes no symmetry is 
present in the CML and a different local model must be 
used at each site. The difficulty, then, of approximating 
the global symbolic dynamics using truncated local 
models scales at worst linearly with N , whereas the exact 
symbolic description scales exponentially. 
 

4. EXAMPLE CASE 
 
 Having defined our local model approach, we wish to 
investigate its efficacy in terms of the commonly studied 
CML written as 

 [ ])()(
2

)()1( 11
1

+−
+ ++−= i

t
i
t

i
t

i
t xfxfxfx εε  (3) 

along with rules for the boundary sites [Kaneko, 1990]. 
The coupling parameter [ ]5.0,0∈ε  sets the diffusion rate. 
Staying with convention we use the logistic map 

)1(4)( xxxf −=  as the local dynamic; therefore, the 
symbol “0” corresponds to a state value in the interval 

)5.0,0[0 =I  and the symbol “1” to the interval ]1,5.0[1 =I . 

For large N the off-diagonal terms of 1−A  decay in 

magnitude as δεε )22/(( − , where δ  is the offset from 
the diagonal [Yamani, 1997]. The restriction of the local 
model to nearest neighbor symbols is tantamount to 
neglecting the 2≥δ  elements of 1−A , which are less than 
1% of the diagonal terms. 
 
 We gauge the fidelity of the local symbolic 
model by its mean error over a test CML trajectory. The 
test data is symbolized and Eq.2 used to produce an 
interval estimate at each CML site i

tx for various local 
model sizes and coupling strengths. We define the 
expected value i

tx~  to be the mid-point of this interval and 

compute a mean absolute error >−=< |~| i
t

i
t xxE over the 

data set. In Figure 2 we plot E  versus symbol depth n , 
and coupling strength ε  for an 128=N  lattice of 
logistics maps. The test data is 410  iterations of the CML 
starting from a random initial condition. These errors 
should be compared to the ]1,0[  range of the dynamics at 
each site. 
 
 As seen in Figure 2a, the fidelity of the local 
model improves smoothly with increasing n . The error is 
shown fitted to the function, βα λ +≈ − nenE )(  for 

1.0=ε  and for the cases of no neighboring symbolic 
information ( 1=m ), nearest neighbors only ( 3=m ), and 
for the global symbolic model ( 128=m ). The value β is 
the extrapolated limit of )(nE  for ∞→n . The 3=m  
local model performs well compared to the global model; 

for 6≤n  there is very little difference in fidelity. We 
note that at 6=n , the local model requires only 16 
symbols ( 263 −× ) to achieve an error of approximately 
1% of the ]1,0[  dynamic range at each site. After 10=n , 
the 3=m model hits an error floor  ( 0044.0=β ), 
whereas the global model asymptotes to zero error. 
 

 
 

Fig.2 Mean Absolute error E for 1=m , 3=m , and 
the global symbolic model )128( =m of a logistic 
CML of 128 elements. (a) E versus symbol depth 

n  for 1.0=ε . β is the extrapolated value of 
)(nE for ∞→n ; (b) E versus coupling strength 

ε for 16=n . 

  
In Figure 2b, n is fixed at 16 and the error is 

shown versus coupling strength. In the region of weak to 
moderate coupling strength )11.0( ≤ε  the error is small 
and there is good agreement between the 3=m  local 
model and the global model. For strong 
coupling )2.0( ≥ε , the error grows steeply for the global 
model, and therefore for the local models as well. The 
error in this case is not so much due to the local symbol 
approximation, but to slow convergence of Eq.2 with 
respect to n . The region ]18.0,12.0[∈ε  contains non-
chaotic states, for which our definition of )(nE is not 
intended; we include this region only for completeness. 

 
5. THEORY AND DISCUSSION 

 
Given that there is merit to the local model 

approach, we now formalize the theory. Define a local 
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symbolic model as the set iS  of at most 12 +−mmn  
elements representing all truncated symbol patterns that 
are allowed by the dynamics at site i . By ``pattern" we 
mean a particular arrangement of symbols within the 

nm ⋅  paddle-shaped window (Fig. 1b). A global symbolic 
state N

kkkkk NN
SSS KL

21
211

=Σ  is an overlapping 
concatenation of local symbolic states. An overlapping 
concatenation is possible between two local symbolic 
states only if overlapping symbols match. The 
approximated global symbolic dynamic can now be 
defined as the set }{

1 Nkk LΣ  of all overlapping 
concatenations of local symbolic states. Obviously, any 
incompatibilities that occur outside the spatial and 
temporal boundaries of the local model are not accounted 
for in this approximation. The set }{

1 Nkk LΣ  as defined 
above is therefore a superset of the actual global symbolic 
model. 
 
 Local models are a compact means of describing 
the global symbolic dynamics of the CML. If we define 
the complexity of a set to be the growth rate of its 
cardinality, then the maximum complexity of the entire 
collection of local models is order 12 +−⋅ mmnN . This 
extreme assumes that a different local model must be 
used at each site. Importantly, the complexity of local 
model approach scales at worst linearly with N , whereas 
the exact symbolic description scales as Nn2  . 
 
 There are two major features of the local 
symbolic model that we wish to emphasize and elaborate 
on here. The first is that local models can be small enough 
to compile from data and store as a table. As seen earlier, 
a 3=m , 6=n  local model closely approximates the 
dynamics of our example CML ( 128=N , 1.0=ε ). Such 
a model can contain at most 535,65216 = symbol 
patterns, whereas the corresponding global model could 
have up to 61282 × . 
 
 A table of local symbol patterns can effectively 
replace Eq.2 if we associate with each entry the mean 
CML state observed for that symbol pattern. The resulting 
data structure is a look-up table (LUT) mapping symbol 
patterns to an expected value at that site. A LUT 
assembled from a finite time data set may not be 
complete; however we can default to LUTs of lesser 
symbol depths to fill in missing entries. The tradeoff is 
that rare symbol patterns will not be resolved as well as 
common ones. 
 
 We find that the 3=m LUT assembled from 

510 iterations of our example CML gives an error which 
is almost identical to that from interval analysis for 7≤n . 
In Figure 2b we have plotted the error (triangles) of 

the 3=m , 6=n  LUT as a function of ε . For very strong 
coupling )25.0( ≥ε , the LUT is superior to the global 
( 128=m , 16=n ) symbolic model, in spite of the lower 
symbol depth. We note that the expected value produced 
by the LUT is weighted by the natural invariant density, 
which is information not used in Eq.2. This extra 
information results in an improved estimate, at least for 
typical orbits. 
 
 The second point we wish to emphasize is that 
local symbolic models can be used to construct arbitrary 
global states and connecting orbits for the purpose of 
controlling spatiotemporal chaos or for transmitting 
information [Hayes, 1993]. In sequence space chaos 
control is straightforward: we may simply append the 
desired target symbol sequence onto the end of the 
current symbolic state [Corron, 2003]. Mapping the 
modified sequence back to state space gives us the 
connecting orbit to the target state. In this setting the error 

)(nE  of the symbolic model is equivalent to the control 
signal amplitude needed to steer the CML along this orbit. 
 
 

6. CONTROLLING TURBULENCE 
 

  
 Take as a control example the challenge of 
steering a logistic CML ( 1.0=ε ) along the symbolic 
trajectory represented by the 363480 × image [Carrol, 
1865]} shown in Fig. 3 (inset). The black and white 
pixels are interpreted as ``0" and ``1" symbols, 
respectively, and each row as the symbolic state of a 
CML. That is, a CML site is greater than 0.5 only if the 
corresponding pixel is white. For dynamical reasons we 
doubled the pixel dimensions to 726960 ×  and replaced 
every black pixel with a 22 × checkerboard of white and 
black pixels, thereby eliminating blocks of consecutive 
``0"s. Using Eq.2 we found that all the 3=m  local 
symbol patterns in this modified image are allowed by the 
CML dynamics for 6≤n . The 726=N , 1.0=ε  CML 
orbit corresponding to this symbol sequence is shown in 
Fig. 3. The first 100 iterates of Eq.3 are uncontrolled. 
After iteration 100, the CML state is steered toward the 
orbit described by the image symbols. The target states 
were read from the 3=m , 6=n  LUT described earlier. 
The mean perturbation required to force the CML along 
this orbit was found to be 0.007, which is less than 1% of 
the [0,1] dynamical range at each site. This assumes a 
controller that pushes the system state exactly onto the 
desired orbit at each time step. One-sided limiter control 
[Corron, 2000] produces the same results, but with 
slightly higher control perturbations (0.011). We conclude 
that local symbolic models extracted from data can be 
used to control spatiotemporal chaos in diffusive CMLs. 
 
 



 

5 

 
Fig.3 A time-space plot of a 1-d CML of 726 logistic 

maps. CML site values are shown on a compressed 
grayscale. Prior to iteration 100 the CML is 

uncontrolled. At iteration 100 control is initiated. 
By iteration 112 the CML has reached the uniform 
period one state. At iteration 300 a complex orbit 
is targeted that approximated the image shown in 

the overlay. 

 
7. CONCLUSION 

 
 We conclude that complex systems that can be 
modeled as diffusively coupled lattices of unimodal maps 
are likely to have a compact description in terms of local 

symbolic models. For these systems chaos control is 
straightforward and novel global states can be predicted 
and targeted from measured data. The approach discussed 
here is easily generalized to multi-dimensional lattices of 
maps with more than two symbols. We think it likely that 
any small in-degree network of such maps is a good 
candidate for reduction to a local symbolic model. It 
remains an open question as to whether networks of 
invertible maps or multi-dimensional maps can be treated 
similarly. 
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